Diabetes Mellitus Significantly Increases Trauma Associated Complications and Utilization of Resources

Matthew J. Delano, M.D., Ph.D.

Assistant Professor of Surgery University of Michigan

October 11th, 2016

Disclosures

No Conflicts of Interest

No Financial Disclosures

"To give anything less than your best is to sacrifice the gift." -Steve Prefontaine

Trauma Health Care Burden

Trauma accounts for 41 million ED visits and 2.3 million hospitalizations yearly

Life Years Lost¹ (2010, most recent available)

- Trauma injury accounts for 30% of all life years lost in the U.S.
- Cancer accounts for 16%
- Heart disease accounts for 12%

Economic Burden²

• \$585 billion a year, including both health care costs and lost productivity

Deaths due to injury³ (2010, most recent available) - 192,000

Ranking as cause of death³

- #1 for age group 1-46, or 47% of all deaths in this age range
- #3 as leading cause of death overall, across all age groups

Falls⁴ (2009, most recent available)

- 8 million people were treated in the ED for nonfatal injuries related to falls
- 2.2 million were people aged over 65 years with substantial comorbidities
- In 2008 over 19,700 people died of fall-related injuries; over 17,700 > 65 years old

2 Finkelstein, E.A., Corso, P.S., & Miller, T.R. The Incidence and Economic Burden of Injuries in the United States. USA: Oxford University Press. 2006 3 Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Web–based Injury Statistics Query and Reporting System (WISQARS) [online]. Accessed February 17, 2014.

4 http://www.cdc.gov/HomeandRecreationalSafety/Falls/adultfalls.html

¹ Life Years Lost: A measure to account for the age at which deaths occur, giving greater weight to deaths occurring at younger ages and lower weight to deaths occurring at older ages. The LYL (percentage of total) indicator measures the LYL due to a particular cause of death as a proportion of the total LYL lost due to premature mortality in the population. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Web-based Injury Statistics Query and Reporting System (WISQARS) [online]. Accessed February 17, 2014.

- Increased body weight and the risk for human disease is a major health concern
- The National Institutes of Health has classified individuals according to body mass index (BMI) to assess populationwide risks for comorbid diseases

NIH/WHO Body Mass I	Index Classifications
---------------------	-----------------------

Class	Body Mass Index (kilogram/meter ²)		
Underweight	<18.5		
Normal Weight	18.5–24.9		
Overweight	25-29.9		
Obese	30–39.9		
Morbidly Obese	\geq 40		

Winfield, R., Delano, MJ., et. al. Crit Care Med. 2010 January ; 38(1): 51–58

Outcome differences between obese and nonobese patients following severe injury

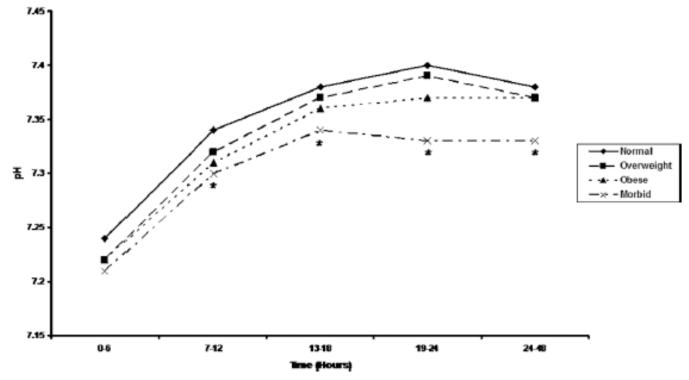
	Normal Weight (n = 173)	Overweight (n = 152)	Obese (n = 101)	Morbid (n = 29)	р
Any nosocomial infection	41.0	48.0	42.6	62.1	.150
Pneumonia	26.6	28.1	26.7	31.0	.958
Bloodstream infection	8.1	15.0	19.8	13.8	.043
Urinary tract infection	17.9	12.4	14.9	34.5	.028
Catheter-related bloodstream infection	2.9	3.9	5.0	10.3	.301
Ventilator-associated pneumonia	25.9	23.7	25.7	20.7	.915

Nosocomial Infections (%)

	Normal Weight (n = 173)	Overweight (n = 152)	Obese (n = 101)	Morbid $(n = 29)$	р
Any noninfectious complication	36.4	38.8	46.5	58.6	.078
Acute respiratory distress syndrome	20.2	21.1	27.7	41.4	.053
Cardiac arrest	2.3	2.6	2.0	17.2	<.001
Myocardial infarction	0.0	1.3	1.0	3.4	.253
Cerebral infarction	2.9	2.0	3.0	0.0	.765
Deep vein thrombosis	5.2	5.9	6.9	6.9	.941
Pulmonary embolism	2.3	3.9	3.0	3.4	.868
Rhabdomyolysis	1.2	5.2	4.0	10.3	.053
Acute renal failure	1.2	0.0	2.0	10.3	<.001
Multiple organ failure	43.9	46.7	58.4	72.4	.008

Noninfectious Complications (%)

Winfield, R., Delano, MJ., et. al. Crit Care Med. 2010 January ; 38(1): 51-58


Study Conclusions:

- Complications increase with increasing BMI
- Independent associations exist between BMI and morbidity
- BMI-related increases in MOF including longer intensive care unit stays, greater number of ventilator days, cardiac arrests, and episodes of acute renal failure

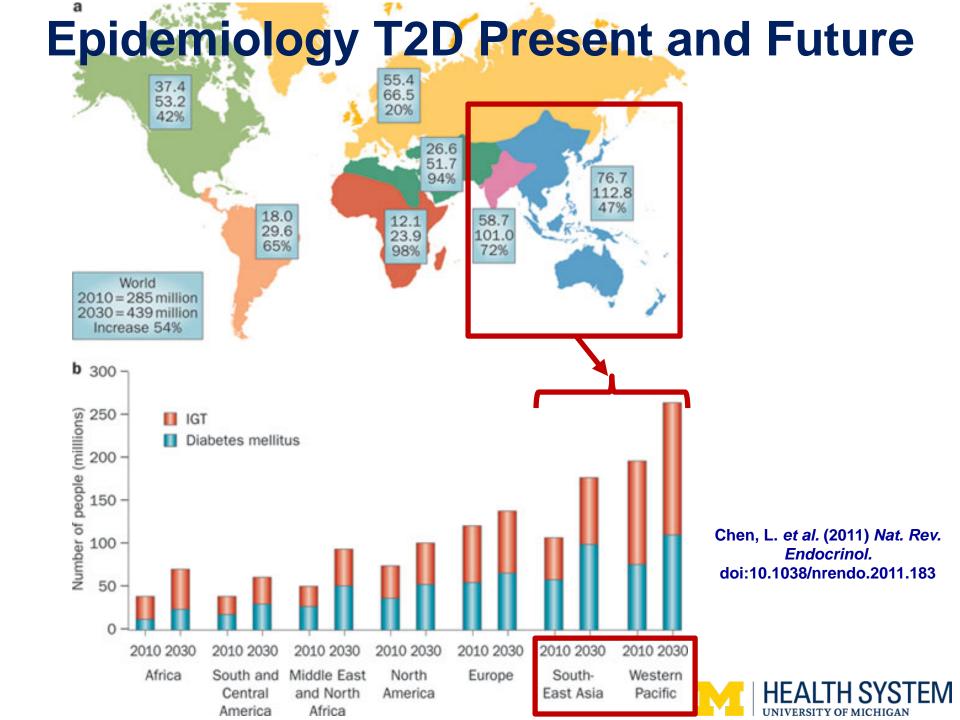
Winfield, R., Delano, MJ., et. al. Crit Care Med. 2010 January ; 38(1): 51-58

What is/are the underlying mechanism(s) responsible for obesity related elevations in MOF and complicated outcomes?

Obese patients received greater resuscitation volumes per actual body mass, however this difference abated when volumes were adjusted for lean and ideal body mass

Study Conclusions Obese Patients:

- Morbidly obese patients show prolonged metabolic acidosis in severe blunt trauma
- The prolonged metabolic acidosis is attributed to suboptimal resuscitation endpoints combined with underlying metabolic abnormalities



- 29 million people in the USA have diabetes of all types
- T2D comprises well over 90% of the total diabetic population (over 27 million now in the USA)
- Over 50 million Indians have T2D now (over 79 million by year 2030)

 With increases in the prevalence of advanced age, obesity, poor diet, and inactivity the incidence of T2D is expected to rise dramatically

Chen, L. *et al.* (2011) *Nat. Rev. Endocrinol.* doi:10.1038/nrendo.2011.183. Kaveeshwar SA, Cornwall J. The current state of diabetes mellitus in India. *AMJ* 2014, 7, 1, 45-48.

T2D and Trauma

- Hyperglycemia is associated with complications and worsened outcome among trauma victims
- Rapid expansion of the elderly and obese populations has increased the prevalence of T2D in trauma patients

<u>Hypothesis</u>: The presence of T2D is associated with poor outcomes among trauma patients

Kao, LS, Todd, R, Moore, FA, The impact of diabetes on outcome in traumatically injured patients: an analysis of the National Trauma Data BankThe American Journal of Surgery 192 (2006) 710–714 McGwin G Jr, MacLennan PA, Fife JB, et al. Preexisting conditions and mortality in older trauma patients. J Trauma 2004;56:1291– 6. Laird AM, Miller PR, Kilgo PD, et al. Relationship of early hyperglycemia to mortality in trauma patients. J Trauma 2004;56:1058–62. Yendamuri S, Fulda GJ, Tinkoff GH. Admission hyperglycemia as a prognostic indicator in trauma. J Trauma 2003;55:33– 8. Bochicchio GV, Sung J, Joshi M, et al. Persistent hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma 2005;58:921– 4.

Materials & Methods

- Michigan Trauma Quality Collaborative data analyzed from 2012-2014 (~ 35,000 patients).
- Patients with no signs-of-life, Injury Severity Score < 5, age
 18 years, and hospitalization < 1 day were excluded.
- Multivariable logistic or linear regression was used to compare patients with and without T2D.
- Variables utilized in risk-adjustment include demographics, physiology, comorbidities, and injury scoring.
- Results were confirmed using propensity score matching.

Patient Characteristics

Table 1.	No Diabetes	Diabetes	p-value
	(n=30,473)	(n=4,238)	
Age	51.4 + 22.8	68.6 + 15.5	<0.001
Male	64.7%	55.9%	<0.001
ISS	12.8 + 8.7	12.1 + 7.3	<0.001
Race (Non-White)	26.2%	17.2%	<0.001
Congestive Heart Failure	2.3%	8.4%	<0.001
PVD	0.3%	1.3%	<0.001
Hypertension	28.6%	73.5%	<0.001
Dialysis	0.5%	3.3%	<0.001
Cirrhosis	0.5%	1.2%	<0.001
Metastasis	0.3%	0.5%	0.0111
Active chemotherapy	0.2%	0.4%	0.0024
Acquired coagulopathy	6.9%	18.9%	<0.001
Obesity	10.2%	23.8%	<0.001
Ascites	0.1%	0.3%	0.0005
Drug use	10.6%	4.1%	<0.001
Smoker	27.1%	14.8%	<0.001
Psych	10.0%	9.9%	0.8673
Anticoagulated	8.7%	23.1%	<0.001
Blunt Mechanism	90.7%	98.0%	<0.001
Transfer	19.7%	21.0%	0.041

HEALTH SYSTEM

UNIVERSITY OF MICHIGAN

Selected Outcomes Analyzed

Table 2.

Complications:

Infection	Incisional SSI Organ Space SSI UTI Pneumonia C. Diff
	Systemic sepsis
Cardiac	Cardiac arrest requiring CPR MI
Renal	Acute renal failure
Venous Throm.	PE DVT - LE DVT - UE

Other	Wound Disruption
	Abdominal fascia left open
	ARDS
	Unplanned intubation
	Stroke/CVA
	Abdominal compartment syndrome
	Extremity compartment syndrome
	Decubitus ulcer
	Enterocutaneous fistula

Propensity Score Matching

				_					
Matching Variables									
Age			· · · · · · · · × · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Age ²			· · · · · × · · · ·	· · · · <mark>·</mark> · · · · · · · · ·			•		
-			· · · · · · · · · · · · · · · · · · ·	<mark>.</mark>					
Sex			··· × ^	<mark></mark>	•••••				
ISS			· · · · · · · ×				• • • • • • • • • • • • • •		
ISS ²			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
GCSM (categories)			· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Pulse (categories)			··· •··· • 🖗 •						
BP (categories)									
Race			× •	•••••••••••••••••••••••••••••••••••••••			•••••		
Mechanism of injury (Blunt)				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
Transfer							· · · · · · · · · · · · · · · · · · ·		
Congestive Heart Failure			••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · ·		
-		· · · · · · · · · · · · · · · · · · ·		<mark>.</mark>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
PVD			• • • • • • • × •	<mark>.</mark> .		· · · · · · · · · · · · · · · · · · ·			
Hypertension			· · · · · · · · · · · · · · · · · · ·	<mark>.</mark>			• Unmatc	hed	
Dialysis		••••	· · · · · · · · · · · · · · · · · · ·						
-		•	~				× Matche	a	
Cirrhosis	50				FC	`		100	
Metastasis	-50		Standar	dized % b	50 ias across cov			100	
Active chemotherapy			Standar			anates			
Acquired coagulopathy									
	Sample	Ps R2	LR chi2	p>chi2	2 MeanBias	MedBias	В	R	%Var
Obesity		+							
Ascites	Unmatched	0.186	4795.03	0.000) 19.5	9.9	125.4*	0.49*	100
Drug use	Matched	0.002	21.51	0.973	3 1.2	1.1	10.1	1.10	40
Smoker					· · · · · · · · · · · · · · · · · · ·				
Psych									

Anticoagulated

HEALTH SYSTEM

T2D Negatively Impacts Trauma Outcomes

Univariate comparison of patients with and without T2D.

Table 3.

		No Diabetes	Diabetes (n=5,598)	p-value
_		(n=40,801)	(11=5,598)	
	Complications (Any)	7.4%	9.5%	<0.001
	Infection	4.9%	6.3%	<0.001
	Cardiac	1.0%	1.7%	<0.001
	Acute Renal Failure	0.4%	0.6%	0.008
	VTE	1.2%	1.1%	0.849

T2D Negatively Impacts Trauma Outcomes

 Logistic regression analysis used to compare patients with and without T2D.

Table 4.Logistic regression:

	OR for Diabetes	[95% CI for OR]
Complications (Any)	1.26	[1.13, 1.41]
Complications (Severe)	1.29	[1.15, 1.44]
Infection	1.29	[1.13, 1.48]
SSI	0.89	[0.51, 1.57]
UTI	1.35	[1.10, 1.66]
Cdiff	0.83	[0.51, 1.35]
Systemic sepsis	1.54	[1.07, 2.23]
Pneumonia	1.33	[1.11, 1.59]
Cardiac	1.39	[1.08, 1.8]
Acute Renal Failure	1.3	[0.87, 1.96]
VTE	0.97	[0.73, 1.30]

EALTH SYS

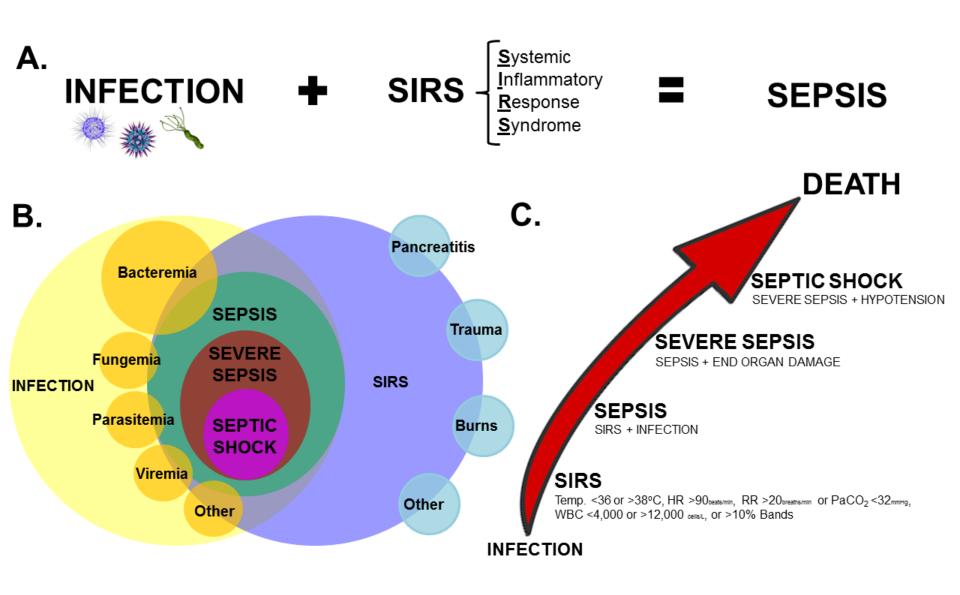
T2D Associated With Increased Hospital and ICU Days

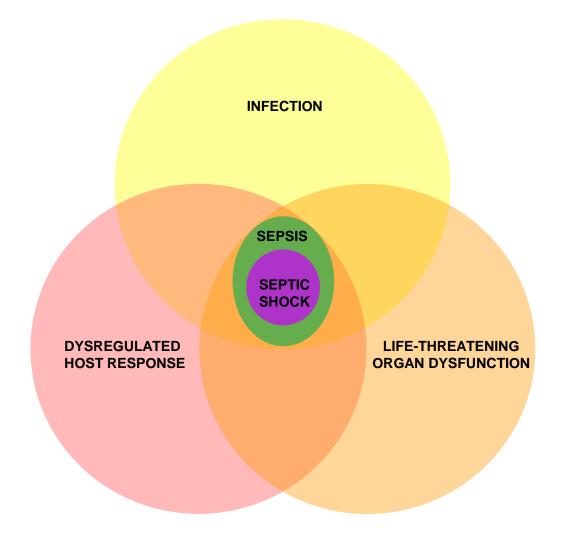
Multivariable regression results

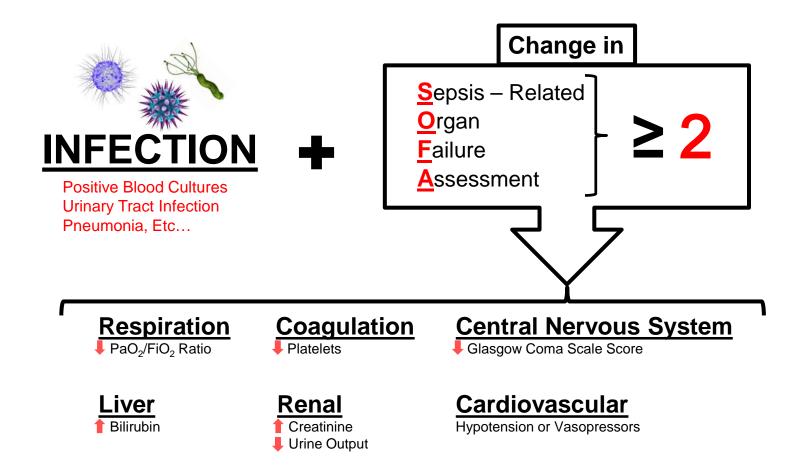
T2D and Poor Outcome Not Associated with Advanced Age

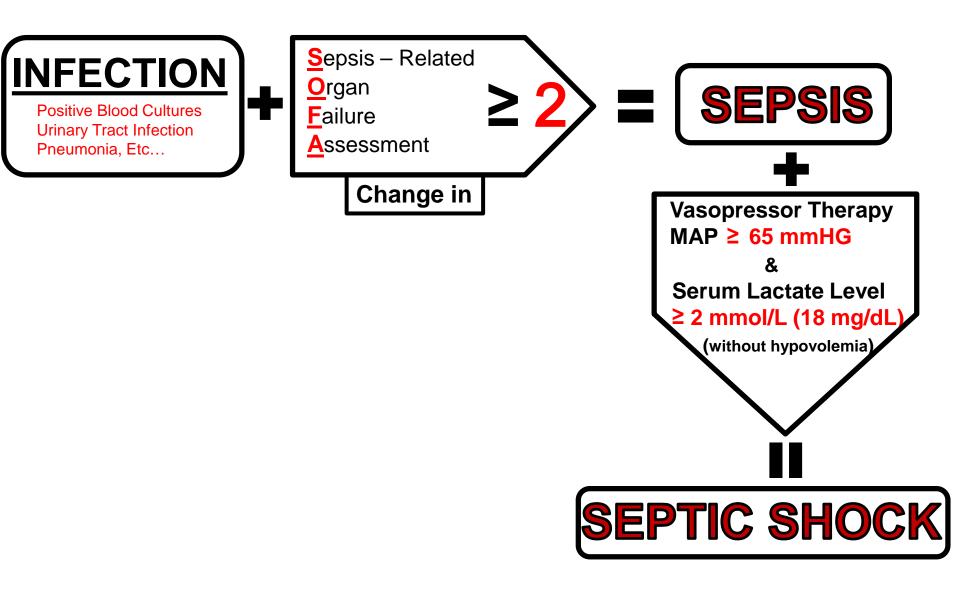
Logistic regression results - Age >= 65

	OR for Diabetes	[95% CI LB for OR]	[95% CI UB for OR]	p-value
Complications (Any)	1.21	1.04	1.41	0.015
Complications (Severe)	1.18	1	1.4	0.057
Mortality	1	0.8	1.24	0.986
Infection	1.25	1.04	1.5	0.018
SSI	1.73	0.63	4.76	0.291
UTI	1.17	0.89	1.53	0.264
Cdiff	1.07	0.56	2.06	0.835
Systemic sepsis	1.85	1.08	3.17	0.025
Pneumonia	1.27	0.99	1.63	0.061
Cardiac	1.13	0.8	1.58	0.488
Acute Renal Failure	1.65	0.91	2.96	0.096
VTE	0.8	0.52	1.22	0.293


Sepsis:

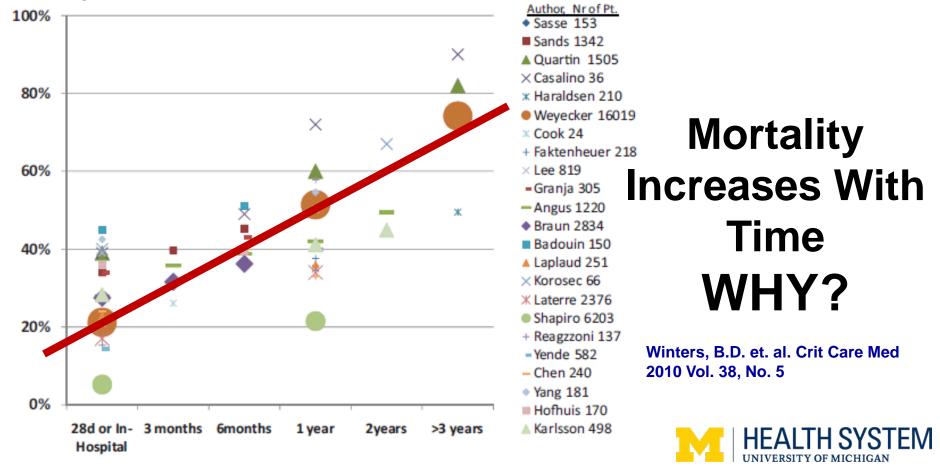

A Significant HealthCare Challenge

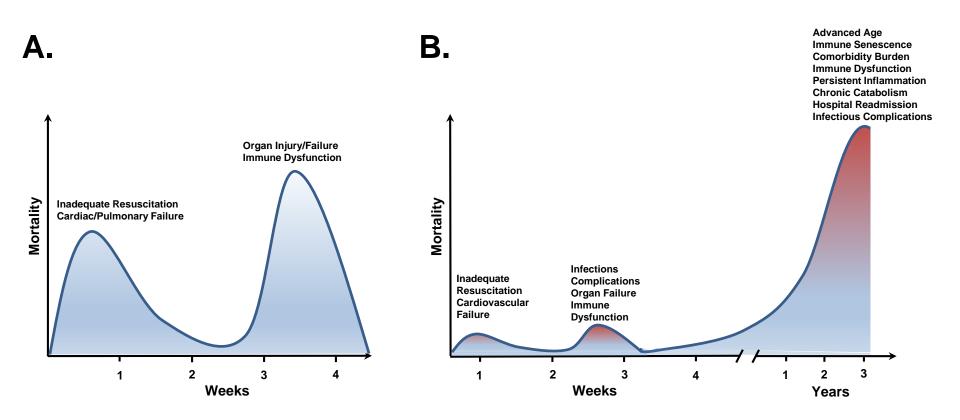

- Major cause of morbidity and mortality worldwide.
 - Leading cause of death in non-coronary ICUs
 - 11th leading cause of death overall USA
- More than 1 million cases annually in the USA.
- More than 500 patients die daily from sever sepsis in the USA.
- Number of cases of severe sepsis or septic shock among all ICU admissions increased every year


Sands, K.E. *et al. JAMA*. 1997 Jul 16;278(3):234-40. *Miniño AM. et al. Natl Vital Stat Rep*. 2011 Dec 7;59(10):1-126 Iwashyna, T.J., Angus, D.C. *JAMA*. 2014;311(13):1295-1297.

Delayed Mortality in Severe Sepsis *circa* 2015

Early Recognition, Protocol Bundling, Benchmarking Outcomes, Goal Directed Therapy and Improved Education have just delayed severe sepsis mortality!!


	ProMISe	ProCESS	ARISE
Outcomes - all groups			
28 day mortality	24.5		14.8 - 15.9%
60 day mortality		18.2 - 21%	
90 day mortality	29.5 %	30.8 - 33.7%	18.6 - 18.8%
1 year mortality		~40%	


The ProCESS/ARISE/ProMISe Methodology Writing Committee., Intensive Care Med. 2013 October; 39(10).

Substantial Severe Sepsis Mortality Occurs Long After Hospital Discharge

 Systematic review of studies reporting long-term mortality and quality-of-life data (>3 months) in patients with sepsis, severe sepsis, and septic shock using defined search criteria.

Innate Immune Dysregulation

Persistent inflammation Chronic catabolism Decreased cytokine production Myeloid cell immaturity Reduced phagocytosis Contracted antigen presentation

Adaptive Immune Suppression

T cell anergy/exhaustion Lymphocyte apoptosis Diminished cytotoxicity Constricted T-cell proliferation Increased Treg suppressor function T cell TH1-Th2polarization Ongoing Organ Injury Poor Tissue Regeneration

Hospital Readmission

Recurrent, Persistent, Secondary and Nosocomial Infections Long-Term Deaths

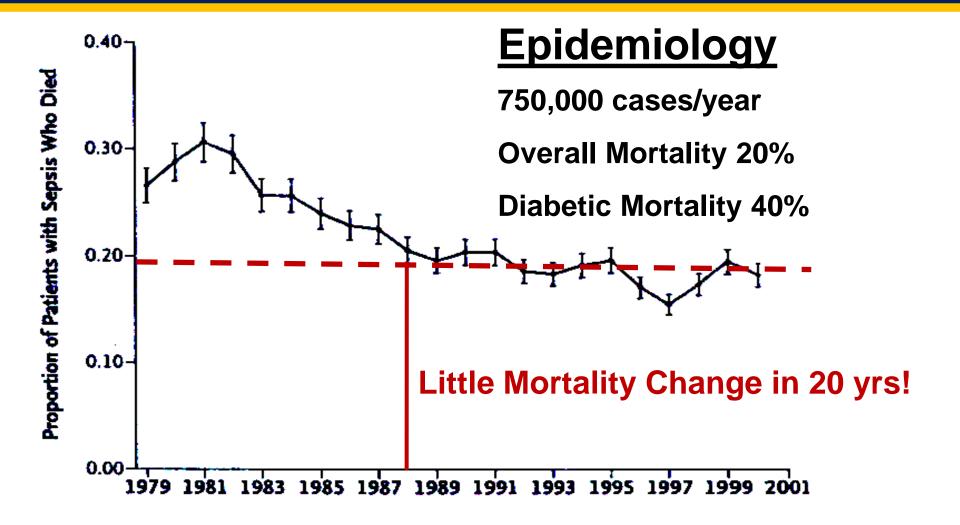
T2D and Infection Susceptibility

			-	-	Main outcome	
Author	Year	Infection type	n	Study design	measures	Main findings
Zhao (29)	2009	Skin infection	8,655	Longitudinal matched control	Incidence of skin infections	Higher risk for skin infections (adjusted OR 2.8)
Kornum (57)	2008	CAP	34,329	Population-based matched control	Pneumonia-related hospitalization	Increased risk for CAP-related hospitalization (RR 1.26 [95% CI 1.21-1.31])
Benfield (32)	2007	Infectious diseases	10,063	Prospective	Hospitalization, 28-day mortality	Higher risk for infection-related hospitalizations and UTI-related mortality (HR 3.9 [95% CI 1.2–12.7]); no difference in mortality because of sepsis, CAP, skin infection, and other infections
Boyko (30)	2005	UTI	1,017	Longitudinal matched control	Incidence of UTI	Higher risk of UTI (RR 1.8 [95% CI 1.2–2.7]) and antibiotic treatment (RR 2.3 [95% CI 1.3–3.9])
Thomsen (58)	2004	Pneumococcal bacteremia	598	Matched control	Bacteremia	Higher risk for pneumococcal pneumonia (OR 1.9 [95% CI 1.4 - 2.6])
Shah (31)	2003	Infectious diseases	513,749	Matched control	Hospitalization, mortality	Higher risk for hospitalization (RR 2.17 [95% CI 2.10 –2.23]) and infection-related mortality
1 Infe	ectio	(1.92 [1.79 –2.05]); no difference in in-hospital mortality (1.05 [0.89–1.01] and 0.84 [0.87–1.01])				

Schuetz, P. et.al. Diabetes Care, Volume 34, March 2011

HEALTH SYSTEM

T2D and Sepsis


Author	Year	Infection type	n	Study design	Main outcome measures	Main findings
Kornum (37)	2007	CAP	29,900	Population-based cohort	Complications, bacteremia, mortality	Higher mortality rates (1.2 [95% CI 1.1–1.3]), but similar rates of complications and bacteremia; mortality within patients with diabetes increased when initial glucose levels >14 mmol/L in multivariate analysis (adjusted MMR 1.46 [95% CI 1.01–2.12] compared with patients with glucose <6.1 mmol)
Thomsen (36)	2005	Enterobacteria bacteremia	1,317	National registry	Bacteremia, 30-day mortality	Higher risk for bacteremia (OR 2.9 [95% CI 2.4–3.4]) and a trend toward higher 30-day mortality (1.4 [1.0–2.0
Fine (35)	1996	CAP	33,148	Meta-analysis	30-day mortality	Higher risk for mortality (OR 1.3 [95% CI 1.1–1.5])

$$T2D \rightarrow Infection = Sepsis \rightarrow Mortality$$

Schuetz, P. et.al. Diabetes Care, Volume 34, March 2011

Sepsis Mortality Rate

Martin, GS, et al. 2003. NEJM 348:1546-54.

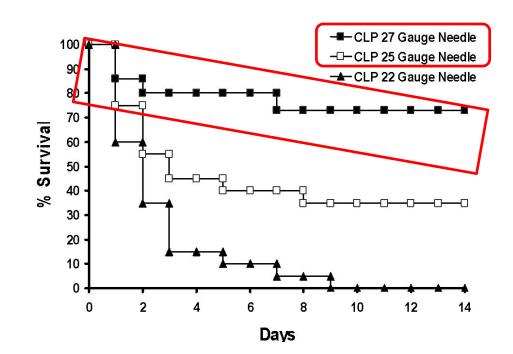
Over-arching Hypothesis:

T2D acts as an immune deficiency associated with defects in neutrophil function that directly contribute to bacterial persistence and sepsis mortality.

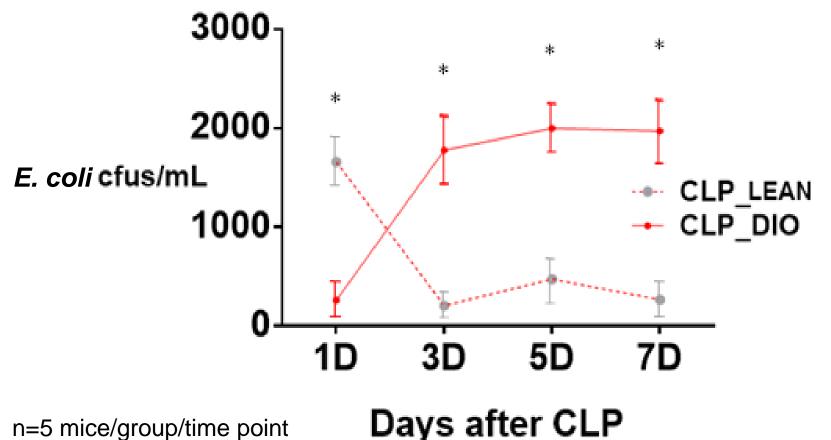
Diet Induced Obesity (DIO)

Key Points:

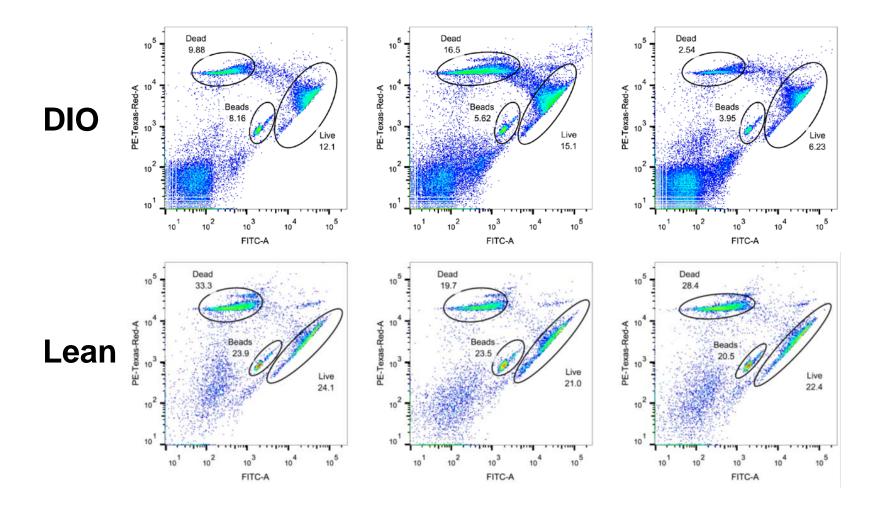
C57BL/6J males and controls at least 30 weeks of age to mimic middle aged and older humans


Model of pre-diabetic type 2 diabetes and obesity with elevated blood glucose and impaired glucose tolerance, hyperlipidemia

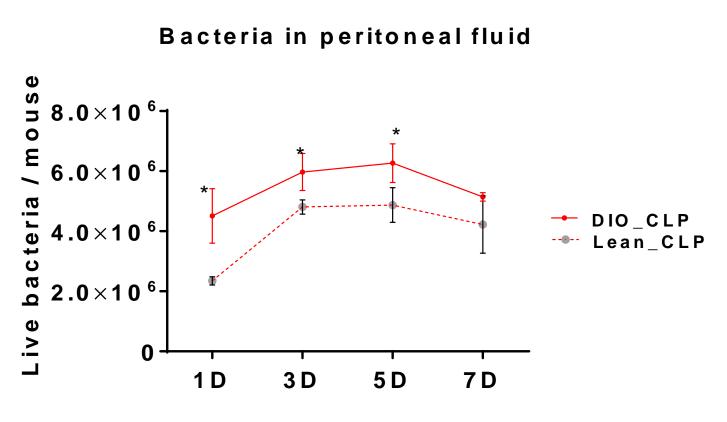
DIO and Cecal Ligation and Puncture (CLP)


LD₁₀₋₂₀ in C57BL/6 mice at 7 days

Delano, M.J., et. al. *J Exp Med.* 2007. 204(6):1463-74. Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moldawer LL, Efron PA Curr Protoc Immunol. 2010 Nov;Chapter 19:Unit 19.13.


DIO vs WT : Bacteria Eradication

n=5 mice/group/time point ANOVA



Detect Bacteria by Flow

DIO vs Lean : Bacteria in peritoneal fluid

Days after CLP

n=5 mice/group/time point, ANOVA

- DIO mice demonstrate overall bacterial persistence compared with Lean controls long after sepsis.
- What accounts for the bacterial persistence observed in the DIO mice?

Conclusions

- Trauma patients admitted with T2D experience much higher rates of all, serious, and infectious complications.
- A better understanding of the physiologic aberrations associated with T2D is necessary to reduce excess morbidity, resource consumption, and improve quality survival in trauma patients with T2D.

Acknowledgements

University of Michigan Collaborators

- **MTQIP** Collaborative
- Dr. Mark Hemmila
- Anne Cain-Nielsen, MS Biostatistician
- Dr. Peter Ward Lab
- Dr. Carey Lumeng Lab
- Dr. Krishnan Raghavendran Lab

Nonprofit corporations and independent licensees of the Blue Cross and Blue Shield Association

Questions?

